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Robust Discrete Time Tracking Control Using
Sliding Surfaces

Seung Ho Cho*
(Received May 30, 1994)

This paper deals with the robustness issues associated with the feedforward tracking control
with respect to unmodeled plant uncertainties. Based on the Diophantine equation, a new

discrete time sliding functions has been defined and utilized for the robust feedforward tracking

control law. The robustness is achieved by using a sliding function-based nonlinear feedback.

As for model/plant mismatches the plant order uncertainty and parameter uncertainty are taken
into account for robustness analysis. Noncircular machining has been adopted as an application
example of this algorithm. Through computer simulation it has been shown that the robust

discrete time tracking control is effective for unmodeled plant uncertainties.
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Tracking Control, Noncircular Machining

1. Introduction

In servoproblems, the feedback controller is not
sufficient for assuring good tracking performance

when the desired positionis time varying. The
tracking performance can be significantly im

proved by the feedforward controller, the design
of which is based on the inversion of a dynamical

model which describes the controlled plant and
feedback controller. It is used as a prefilter for

processing the desired output so that the overall
transfer function from the desired output to the

actual output becomes close to unity. In designing
feed forward tracking controllers, di fferent

approaches maybe taken depending on whether
the pliant is a minimum phase system or a non

minimum phase system. This paper is concerned
with minimum phase system. For minimum phase
systems the feedforward tracking controller can
be designed to achieve perfect tracking based on
stable pole/zero cancellation. Given the desired
trajectory, the optimal linear tracking
approach(Anderson and Moore, 1971), previ
ewcontrol approach(Tomizuka and Whitney, 1975),
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and independent tracking and regulation

approach(.Landau and Lozano,1981) are well
known to be effective for the purpose of tracking.

The control schemes discussed above are based
on the assumption that the plant is accurately

known. In fact the model/plant mismatches may
significantly degrade tracking performance and
even result in the instabilities of the overall sys

tem. These model/plant mismatchl:s are due to
modeli ng errors, wh ich consist of
parameter(structural) uncertainty and

order( unstructural) uncertainty, and disturbances

etc.. In this paper a discrete time version of
variable structure control(Utkin, 1977) is applied

to enhance the robustness of perfect tracking
control. We construct the nonlinear feedback

control law which is based on discrete time slid
ing function. This paper extends the idea
of(Kreisselmeier and Anderson, (986) to the

proof of boundedness of control input and of
output signal. As an application example of this
algorithm, noncircular machining(Higuchi et ai,

1984) is adopted for computer simulation.
The remainder of this paper is organized as

follow. Section 2 describes the formulation of the
problem. Section 3 describes the robust discrete
time tracking control algorithm and analyzes the
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2. Formulation of the Problem

The controlled plant is assumed to be represent
ed by the following discrete time model :

stability of robust discrete time tracking control
system. Section 4 describes the numerical example
of noncircular machining. Conclusions are given
in Sec. 5. We achieve perfect tracking control by stable

pole/zero cancel1ation. In this paper we propose
a robust discrete time tracking control by combin
ing pole/zero cancellation and discrete time ver
sion of sliding control. For assignment of closed
loop poles and setting the structure of the control
system, we utilize the fol1owing Diophantine
equation.

Dl(Z-I)=A(z-I)Sl(Z-l) +z--dR1(z-l) (6)

3. Robust Discrete Time Tracking
Control

(I)y(k)

where

(> u(k) and y(k) are the measurable input
and output respectively,

(> T/(k) represents the modeling error,
(> A(Z-I) and B(Z-l) are polynomials in the

backward shift operator z-l, of the form

A(Z-I) = I +alz- 1+ ···8anz-n,

B(z-1)=bo+blZ-1+"'+bmz-m, bo=4= 0.

The order nand m as well as the delay step d
are assumed to be known. It is further assumed
that( Kreisselmeier and Anderson, 1986)
AI: fl(Z-I) and B(Z-l) are coprime.

A2: 11/(k)l::;;pm(k), where p is a positive scalar
and m(k) is defined by

m(k)=am(k-IH lu(k-I)I+ly(k-l)l,

0< a< I. (2)

A3:11 19111::;;Pb where et=[ah "', am bo, "', bml
and PI is a known positive scalar.
The plant( I) can also be expressed as

where

(II)

8!=(bo, boSt + bh "', bmSd-l,

ro, rl' "', rn-I), (8)

¢[(k)={u(k), u(k-I), "',

u(k-m-d+l), y(k), (9)

y(k-l), "', y(k- n+ I)}. (10)

and TtAk) is expressed as fol1ows

RI(Z-I) = ro+ rlz-1+ + r n_lZ-(n-l),

Sl(Z-l)= I +Sl[l + +Sd_lZ-(d-l),

Dl(Z-I)= 1+dlz- I + +dnz- n.

From Eqs. (6) and (1), the following equation is
derived.

where

where

e[=(I, al +Sh "', anSd-I),

#(k)={T/(k), T/(k-I), "',

T/(k-n-d+l)}.

To derive the bounds of lel¢2(k--d)1 and 1T/2
(k)1 it is necessary to have the fol1owing assump
tion.

where r=max deg(n, m+d),

Km1=(m+ I)Pl +(m+ I)(d -I)PIP2+ nP2·

Proof:

A4: 118dll::;;P2, where 81=(sl, S2, "', Sd-h ro, rh
''', rn-l) and P2 is a known positive scalar.

Proposition 1) lel¢ik- d)1 ::;;Kmtal-d-rm

(k),

(3)

(5)

(4)

III = 1+ Pla-nn

which is derived in Appendix.

where

with

¢[(k)={-y(k-l), ''', -y(k-n),

u(k-d), "', u(k-d-m)},

T/I(k) = A([l)T/(k).

Then it follows from A2-A3 and (2) that

IT/l(k)1 = IA(z-l) T/(k)l::;; IIlpm(k)
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(21)

=ISb-1)B(z-1)U(k-d)

+ R1([1)y(k- d) I
=1 (I +~>iZ-i) ~bi [ruCk-d)

n-l

+ ~ ri z-iy(k-d) 1
i=O

m n-l

sl ~biU(k-d-i)I+1~r,y(k-d-i)1
i=O i=O

d-I m
+1 ~S, Z-i ~bi z-iu(k-d) I· (12)

i=1 i=O

The first term of (12) becomes

! "i:.biU(k-d-i) I
i=O

sl bou(k-d)I+lblU(k-d- I) I
+···+1 bmu(k-d-m) 1

slbol a1-dm(kHlbd a1-d-1m(k)

+"'+Ibml a1-d-mm(k)

s( Ibol+lbd+"'+lbml )a1-d-mm(k)
s(m+I)Pla1-d-mm(k). (13)

Similarly the second term of (12) becomes

n-l

1 ~ riy(k-d-i) Isnp2a1- d- n +1m(k).
i=O

(14)

The third term of (12) becomes

d-I m
1 ~S,[' ~biZ-iU(k-d) 1

i=1 i=O

=1 (SlZ-1+S2Z-2+"'+Sd_1Z-(d-lJ)

"i:.bi['u(k-d) !
i=O

s IS1"i:. b,[i-1U(k- d)1 + IS2i: biz-'-2u(k- d)1
z=O i=O

=1 Sd-l "i:.biu{k-d-i-(d- I )} I
2=0

SISd-d "i:.lbillu{k-d-i-(d-I)} I
i=O

s [sd-d Pl( m + l)a1-d-m-(d-lJm(k). (18)

Substituting (16), (17), and (18) into (15) leads to

d~l m
1 ~S,[i ~biZ-iU(k-d) 1

i=1 i=O

s( Isd+ls21+"'+lsd-d)
• Pl(m+ I)al-d-m-(d-llm(k)

s Pl(m+ I)pz(d - l)a1-d-m-(d-llm(k). (19)

Finally substituting (13), (14) and (19) into (12)

leads to

!81¢2(k~d)1

s(m+ I)Plal-d-m-(d-llm(k)

+ P1P2( m + I )(d - l)al-d-m-(d-lJm(k)

+ np2a1- d- n + 1m(k)

SKmlal-d-rm(k). (20)

It follows with assumption A4 that

17}2(k)! = IA(z-l)Sl(Z-l) 7}(k)1
s ))2/.1m(k)

with

))2= I +3plP2n(d-l)a- n -(d-l) (22)

which is derved in Appendix.

For 7}2(k) =0, the control law for regulation
and tracking can be obtained by letting the track

ing error satisfy

(15) D1(z-1)[y(k+ d) - Ym(k +d)] =0 (23)

Each term of (15) can be expressed as follows.

I sli:biz-i-1U(k-d) 1
i::::O

=1 sli:biU(k-d-i-I) 1

i=O

slsd i:lbillu(k-d-i-I) 1
i=O

s Isd Pl(m+ I) a1-d-m-1m(k) (16)

IS2 i: b,['-2U (k - d)1
i=O

where Ym(k) is the desired output.
From Eqs. (6) and (23), the control law is

u(k)= ~o[Dl(Z-1)Ym(k+d)-1Jt(fZ(k)]

A(Z-l) *
D1(z l)B(z 1) y (k+d) (24)

where Bz and (f2(k) are defined by

BI=[bo, en (25)
¢!(k)=[u(k), (fJ(k)] (26)

=ls2 "i:.biU(k-d-i-2)1
z=o

SlS21 "i:.lb,llu(k-d-i-2)1
1=0

sls2IPl(m+ l)a1
-

d
-

m- 2 m(k)

and

y*(k) = Dl(Z-l)Ym(k).

For 7}2(k) =1=0, Eq. (23) ist not achieved under the
(17) control law (24).

In designing a robust discrete time tracking
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s('-)

FIg. 1 Sliding surface with boundary layer

controller we define s(k) by

s(k)=Dt(Z-I)[y(k)- Ym(k)] (27)

and add a control loop with s(k) to compen

sate the modeling error 7}2( k). While it is not
possible to let s(k)=O, this additional control
loop resembles the sliding mode control for con

tinuous time systems. Outside the boundary layer

(!s(kll:2: (j) as well asinside the boundary layer

(Is(kll < (j) the control law(24) is now modified
to

u(k)= ~Js(kH D1([1)Ym(k+ d)-1Jl¢2(k)

- Ksat{~~)}]

where

1

+1, for ¢ss(k),

. s(k) s ksat{~}= ~), for -(j)<.dk)<(j),

-I, for s(k)s - (j), (29)

and 1Jz and ¢2(k) are defined by (25) and (26).
(j) determines the size of the boundary layer

around s(k)=O. s(k) is expected to behave as
illustratedin Fig. I. The overall block diagram of
the robust discrete time tracking control system
becomes as shown in Fig. 2, where SBl(Z-l)=B

(zool)SJ(zol) - boo

Proposition 2) For arbitrary do >0 there

exists a 110> 0 (which depends on do) such that for
all 0 s tL s tLo and arbitrary initial c:onditions, it
follows that

IS(k) Is dam (K)

Proof: Since the reference input Ym(k) is
bounded in modulus by a known constant and D1

(zol) is a strictly stable polynomial,

,---------~ s(k)

Ym(k +d)

+

+ +
1----1....-..( >-----.1

Fig. 2 Robust discrete time tracking control system

y(k)
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where

Is(k)1 = ID1(Z-I)y(k) - DI(Z-I)Ym(k) I
= 17J2(k)1
s )/2f./m(k)

sdom(k) (30)

do = )/2f./o·

r'(k)+ u(k)

+

s6m(k-I)+ I K
p

-I {dom(k-I)
-6pZ

+ Iy*(k -I)I}

+ I K
p

I {dom(k-I)- 6pZ

+ Iy*(k + d -1)1 + K} (33)

Proposition 3) m(k) is bounded, in turn u

(k) and y(k) are bounded.

Proof: Since DI(Z-I) is a strictly stable
I A(Z-I)

polynomial, let DI(Z-l) and D1(z I)B(z I) be

both exponentially bounded in modulus by K p

and in exponent by 6p. Then we get

(36)

(38)

(39)

(41)

(42)

(43)

+ r*(k).

(1- 6)(1- 6p) - 2Kpdo >0.

It can also be written as

liCk) = r*(k) + 2Kpdoz-: m(k)
1- 6pZ

I -
m(k) 1-6Zlu(k)

which is depicted in Fig. 3.
Its closed-loop characteristic equation is

Ct(Z-I)=(l- 6Z- I )(l- 6p[I)-2Kpdoz- I=0.

(40)

i.e.,
Boundedness of m(k) is guaranteed if CI(1) >0,

Fig. 3 Feedback configuration for the robust stabil
ity investigation

(l-6z- 1)m(k)=r*(kH ;Kpdoz-
1

1
m(k) (37)

-6pZ

or, equivalently, as the feedback system

Since m(k) is an upperbound of m(k), the
boundedness of m(k) in turn assures the boun
dedness of all signals of the robust discrete time
tracking control system. Noting that 6, 6p lie in
(0, I) it is not hard to see that the stability of the
feedback configuration (38), (39) is obtained if do

is chosen so that do> 0 and

The condition that fP and K satisfy will be
explained in theorem.

Notice that from Eqs. (27) and (28), s(k) sat
isfies

The robust stability of the robust discrete time
tracking control system is proved in the following
theorem.

Theorem: Robust Stability of the Robust Dis-

(31)

(34)

ly(k-l)ls I-~:Z 1

• { Is(k -1)1 + Iy*(k -1)1 }.
Outside the sliding boundary layer

lu(k-l)ls I K
p

-I-6pZ

.{ Is(k-I)I+ly*(k+d-I)I+K}. (32)

Further (2), (31) and (32) yield

m(k)s6m(k-l)+ I K
p

I {ls(k-I)I+ly*(k
-6pZ

-I)I}+ I K
p

-1{ls(k-I)I+ly*(k+d-6pZ

-1)1+ K}

Defining

r*(k) 1-~:z 1 {Iy*(k-I)I

+Iy*(k+d-I)I+K}

it follows

m(k):::;: 6m(k -I) + 12Kpdo 1 m(k-I)
-6pZ

+ r*(k). (35)

Let m(k) be an upper bound of m(k), then (35)
can be expressed as

m(k)=6m(k-l)+ 12Kpdo I m(k-I)
-6pZ
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which can be interpreted as the distance to thesur

face s(k) =0.

Then we can formulate the followig difference

equation.

crete Time Tracking Control System:
The robust discrete time tracking control sys

tem, consisting of the plant( I) and the control

law(28), is stable in the sense that Is(k)1 decreases

when Is(k)1 > (lJ and that the steady state value of

s is bounded by (lJ.

Proof: Introduce the following discrete

Lyapunov function candidate

V(k)=ls(k)! (44)

If K is selected as following

K c= f'z + 7)0 (48)

where 7)0 is related to s(k+d)=s(k)-7)o sgn {s
(kll. If we want to u~e the discrete-time sliding
controller for robustness even when there exists

no modeling error in plant equation( I), i.e., 7)(k)

=0, in light of the inherent property of sliding
mode control we have to assume the boundary

layer thickness, which is related to 7)0 in(48).
Then (44) will be a Lyapunov function in the

following region.

(49)

Then the solution takes the following forms:

Ks(ld d)=( 1-q;)S(k)+ 7)2(1d- d). (50)

(54)

(52)

(53)

(51)

int (~).-I

sl(k)=tlil1t(~)S(O)+ 2:: tl j 7)2(k--j· d)
)"",0

int (~) ~ 1

s2(k)=tlil1t(~)s(l)+ 2:: tl j 7)2(k--j· d)
)=:0

Sd( k) = tl in! (~)s(d - I)
iJlt(~)-1

+ 2:: tl j 7)2(k-j·dl
)=0

KI ~q;=)..

From (48) and (51):

(lJ ,= ~2~1~.

From the stability viewpoint the following rela

tion should be satisfied.

Inside the boundary layer, the s-dynamics

become:

The boundary layer thickness (lJ can be selected
such that (43) shows characteristics of a first

order filter with input 7)2( k + d) and eigenvalue.

Here "int" means integer value. In each equation
of (54) the first term of right hand side represents

transient solution, whereas the second term repre
sents steady state solution. Although r;2( • ) is not
fixed, it is a forcing term which is bounded and

dominates steady state behavior.

(47)

In designing a robust discrete time sliding

controller it is desirable to reachthe sliding sur
face as soon as possible at transient stage, which

motivates the use of upperbound of modeling

error.
Th(: second condition on K is derived from the

fact that between sampling instants the system
behaves in open loop manner, which forces the

distance from sliding boundary layer be decreased
from stability viewpoint as the discrete-time k
increases. So the minimum value of 2Isi(k)l- Fz

is 2(lJ - F 2·

o sd(k), Vik): k takes values
d-I, 2d-l, 3d-I, 4d-l,

Basled on the Proposition 3 let us assume that

the upperbound of modeling error is constant, i.e.

17)2(k)I~J)2f.Lm(k):s;:F':z (46)

where F 2 is a bounded scalar.Then the following

two conditions on K make (45) negative.

Ll1/,(k+d)= V,(k+d)- V,(k), i=l, 2, ... , d,

=!s,(k+ d)I-lsi(k)1

= IsJk) + 7)2(k +d) - Ksgn{s,(k)}1

-ls,(k)1 (45)

where the sliding function and Lyapunov func

tion with subscript i are defined as follows.

o sl(k), V,(k): k takes values
0, d, 2d, 3d, ...

o s,,(k), VZ(k): k takes values
I. d+l, 2d+l, 3d+I, .. ·
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For a stable eigenvalue /l the steady state solu

tion becomes:
00

lim sJk)=lim 2: /lj7jz(k- j • d). (55)
k--oo k-oo J:=O

From (55) the following relations are derived.

I lim s(k) I:<:=: {I +1/l1+1/llz+"'}Fz (56)
k-oo

I ~i!:2 s(k) I:<:=: I ~ IIlI F z< I ~1l1 (57)

[lim s(k) [< (/) (58)
k-oo

5600

...
'2
:l

----C
0...::
E
e 0

where n8 and N are the spindle speed in rpm and
a required number of points to describe the cross

sectional shape, respectively. In this paper N=

4. Numerical Example of Noncircular
Machining

As an example of motion control the noncir

cular machining has been adopted with electrohy

draulic servosystem for tool positioning. Noncir
cular machining is a turning operation which

generates a workpiece with noncircular shaped

cross-sections(Higuchi et aI., 1984 and Tomizuka
et aI., 1987). Figure 4 shows the specification of

noncircuiar cross-sectional shape of workpiece by
a series of points, where the position of tool is

controlled by hydraulic cylinder. The sampling

period is determined by

o 5600

(5 micron/unit)

Fig. 5 Desired noncircular shape

~ 5600 ~ --"-~'-'-'---'--- --.J

5600

250 and a nominal spindle speed of 600 rpm
results in a sampling time of 0.4 msec.

Figure 5 shows the desired noncircular ellipti
cal shape, which is obtained by letting the tool
follow the signal in Fig. 6. The signal is repetitive

with a period of 250 samples which are evenly
spaced over one spindle revolution. Electro

hydraulic servosystem is inherently nonlinear, but
in this paper it has been idealized as a second

order linear system(Higuchi et ai, 1984).
Equations (60) and (61) describe the transfer

function of electro-hydraulic servosystem in La

place domain and z-domain respectively. The
closed loop zero is expressed in Eq. (62), which is

to be utilized for the design of robust discrete time
tracking controller.

(59)IT8=-()~sec
~N
60

Tool

--z::..
y(k)

Workpiece

--t-i
/ \ .,,~.rpm

I I ~ Ym(k+l)

( \ y",(k t 2) ".

\
'~l~

Fig. 4 Specification of noncircular cross-sectional
shape

COO

500

...
400a

:J

" 3000:
0..
co

200
E
," 100

0

~ 1oq)~ - "5\5 Tto··· .' ~'26-o- ~)()

Angular Position (1.44 deg.junit)

Fig. 6 Extended desired trajectory
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The following parametric values are used for

the design of robust feedforward tracking control
ler.

(K1, T1) = (160, 0.002)

(ab az bo, bl)

=o( -1.81873,0.81873,0.00599, 0.00554)

closed loop zero=0.9325+0j

The design parameters for controller are as fol

lows.

Diophantine Equation: (0-0.2z- l )2

11>=5.0, K=0.5, ,1=0.9

The robust feedforward tracking controller as

well as feedback controller has been designed

based on the transfer function (60). Especially the
closed loop zero becomes the pole of feedforward

tracking controller. Once the closed loop zero is
utilized for the design of feed forward tracking

controller, the role of it ends up. Next our con

cern moves into the uncertainties of plant in order

to show the effectiveness of robust discrete time

tracking controller.
To consider the influence of the parameter and

order uncertainty upon tracking performance, a
couple of perturbed transfer functions have been

utilized for simulation.

(66)

y(s) K I

U(S) s(l + TIs)
y(k) z-I(bo+ bIZ-I)
u(k) I+alz l+ aZz 2

closed loop zero = I+ (Ts/ TI)( 1- e-TsI71)
I-e 7s171_ Ts/Tl

(60)

(61)

(62)

(8al+8azz-
l
) y(k-I)

I+alz I+ azz z

+_(8bo+8blz-L (A,-I)
1+ alz-1+azz-z u. .

To conform the results thus obtained in Sec. 3.
We are going to demonstrate whether the robust
discrete time tracking control is really robust or

not against the order uncertainty and parameter
uncertainty when the closed loop zeros are locat

ed inside the unit circle. In simulation the numeri
cal values of boundary layer thickness 11> and
controller gain K are 5.0 and 0.5 respectively
except the special cases for examining the effect of

boundary layer thickness.
Figure 7 shows the control input and output

error under the order uncertainty. Note in the
figure that the robust discrete tim tracking control

is superior to perfect tracking control(PTC) when

there is a model/plant mismatch in system order.

500

- 50q]H+t.S?co----';,oi\ro'--"hso\02*,oo""2ckso"~J~0560
TIME. k

Fig. 7 Control input and output error under order
uncertainty(solid: PTC, dot: robust discrete
time tracking control)

(65)

(64)

(63)y(s) Kz
U(s) s(l+Tzs)

Y(s) K I

U (s ) s(I +---:OT;C;-Is::';;:)~(1'-+~T'-3S~)

wherf:, K z= 150, Tz=0.005, T 3 =0.003

Considering (61), the discrete time representation

of (63) becomes:

y(k) z-I[(bo+8bo)+(bl+8bl)Z-I]
u(k) I +(al +8al)z l+(az+ 8az)z 2'

Equation (65) can be reconstructed to the form

(66), which satisfies the assumption A2 in Sec. 2.
In thc~ similar way (64) can be discretized to the
form satisfying the assumption A2.

Y
(k) [l(bo+ bIZ-I) u(k)

I+alz I+ azz z
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cf> o.s
cf> - .s.o
.p 2.'),0

PTe

'01,\-- ~,\,~-~ T(~-0-1 ~C~O-2~:J 'S60-Jt-r-466 --4--S-o---s6oJ
TIME, k

(a) K 2 = 150, 12 = 0.005

4>~ 5.0
-PTC

1:~t\ ~ I~~I\111,At\ n'\ I~ I(-500~~ V \I I, I I f I I I \ I
-100U~ vv I, I) I
-1500~ V I \ J
- 200°0 250- 500 750 lOof 12~O - 1"520

TIME. k

(b) K, ~ 100, 1; ~ 0.4

Fig. 8 Output error according to the boundary layer
under parameter uncertainty

Figure 8 shows the output errors according to the

boundary layer under parameter uncertainty.

Both in Figs. 7 and 8 the discrete time scale of
x-axis is 0.4 msec per unit. The scale of output

error is 5 micron per unit.
We can observe in Fig. 8(a) that the robust

discrete time tracking control is not superior to

PTC in view of steady state error when the degree

of parameter uncertainty is small. That character
istics are inevitable due to the inherent property
of sliding control with saturation, which is sup

posed to admit a some degree of error for robust
ness. By manipulating the boundary layer (/J the

steady state performance can be increased to a

satisfactory level, which is to be based on the
degree of admissible output error. From these
observations we need to trade off between the
steady state performance and robustness under
parameter uncertainty. When the degree of param
eter uncertainty is large, the robust discrete time
tracking control is superior to PTC as is shown in
Fig. 8(b).

5. Conclusion

To increase the robustness of the feedforward

tracking control system, a new discrete-time slid-

ing function has been defined based on Dio

phantine equation and utilized for the formula
tion of control law. The equation expressing the
sliding boundary layer is composed of eigenvalue

in s-dynamics and of upperbound in modeling
error. The modeling error which ultimately affects

on the tracking performance is diluted in the
sliding boundary layer by way of saturation func
tion, which results in increase of robustness. The
performance of robust discrete time tracking con

troller can be examined in a couple of viewpoint,
i.e., order uncertainty and parameter uncertainty.

The robust discrete time tracking controller can
be utilized more effectively than perfect tracking

controller under plant order uncertainty when the
closed loop zero is located on negative real axis

inside the unit circle. But under parameter uncer

tainty a couple of contradictory phenomena have
been observed due to the inherent property of

sliding boundary layer. When the degree of

parameter uncertainty is small, the output error
under robust discrete time tracking control is

larger than that under perfect tracking control.

But as the degree of parameter uncertainty
becomes large, the output error under robust

discrete time tracking control becomes smaller
than that under perfect tracking control. If param

eter adaptation algorithm is combined with

robust discrete time tracking control in order to

estimate the uncertain parameter, the steady state
performance is expected to be improved when the
degree of parameter uncertainty is large. We are

now preparing it and the result will appear in a
near future.

Appendix

A Derivation of (4), (5), (21), and (22)

7J,(k)=A(z- 'h(k) (A.I)

IlJ,(k)1 = 1A(Z-') lJ(k) 1
=1 (I +alz-1+'''+an[n)lJ(k) 1
sllJ(k)I+1 a'lJ(k-l) 1

+·,,+1 anlJ(k-n) I
stLm(kH lad tLm(k-l)

+'''+Ianl tLm(k-n)

stLm(kHla,1 tLlr'm(k)

+". + lanl M-nm(k)
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n
~fJ.m(k)+ f-UJ-nm(k) ~ lail (A.2)

i:=::1

.,. + ISd-l~a,[ ,-(d·l)7j(k)!.
i=1

(A.IO)

n

~Iail~npl
i=1

(A.3) Each term of the right hand side of last inequality
(A.IO) can be expressed as follows.

~ISd-JI fJ.(J-n-(d-l)m(k) ~laJ (A.13)
i=1

Substituting (All), (A.12), and (A.13) into (A.
10) leads to

Sutstituting (A.7), (A8), (A9) and (A.14) into
(A.6) leads to

l7jz(k)1 ~ [ 1+ pz(d - I )(J-(d-ll + PI no-n

+ PIPzn(d - I) o-n-(d-Il ]wn(k)

~ [ 1+ 3pIPZn(d _I)o-n-ld-l ]fJ.m( k).

(A.15)

I sl~afi-l7j(k) 1=1 sl~ai7j(k- i-I) I
i=1 i=1

~Isd [lal7j(k- 2)1+laz7j(k-- 3)1+
···+lan7j(k-n 1)1]

~Isd [ladfJ. m (k- 2)+!azlfJ.rn(k- 3)+

.. ·+lanlfJ.m(k-n-l) ]

~ ISIIfJ.[ ladiJ-Zm(k) + !azliJ- 3m(k) +
.. ·+lanliJ-n-1m(k) ]

~ISllfJ.(J-n-lm(k) ~la,1
i=1

(A.Il)

(AI2)

(A.14)

~ ISIIfJ.(J-n-ld-l1m(k) ~ la,l
i=1

~ IszlfJ.iJ-n-(d-15m (k) ~ lail
z"=l

~Iszlf-UJ-n-Zm(k)flail
i=1

n d-l

I ~ aiz- i ~ SiZ-i7j(k) I
1=1 i=1

~(lsll+lszl+"'+lsd'll)

• fJ.(J.n-ld.l1m(k) flail
i=1

~ P2(d -l) fJ.(J-n-ld-l) m(k)Pl n

=PIPzn(d-I)fJ.(J-n-ld-l1m(k).

so

n
I~ ai7j(k - i) I~ fJ.(J-nnpl m(k). (A9)

i=1

/II = I + iJ-nnpl'

Derivation of (21) and (22) follows the same

procedure as above.

7j2(k)=A(z-I)Sl(Z-I)7j(k) (A.5)

17j2(k)I=1 A(Z-I)SI([I)7j(k) I
n d-l

= I (I +~ aiz- I ) (I + ~ siz-'}7j(k) 1
i=1 i=1

d-l
~17j(k)I+1 ~ si7j(k- i) I

i=1

l7jl(k)1 ~fJ.m(k)+ wrnm(k)npl

= fJ.( 1+ (J-nnpI)m(k)

= lJ]fJ.m(k) (A.4)

n
+1 ~ai7j(k-i) I

i=1

n d-I
+I~ aiz- i ~ SiZ-i7j(k) I· (A.6)

i=1 i=1

where

d-l
I ~ s,7j(k - i) I

i=1

~ ISI7j(k -1)1 + IS27j(k - 2)1 +

"'+1 Sd-I 7j(k-d+1) 1

~lsdfJ.m(k-I)+ls21fJ.m(k-2)+

"'+ISd-d fJ.m(k-d+ I)

~ ISllf-UJ-1m(k) + IS21fJ.(J2 m (k) +

"'+ISd-d fJ.iJ-(d-llm(k)
d-l

~ fJ.iJ-(d-l)m(k) ~ Isd
i=1

::;; fJ.iJ-(d-llm(k)(d - I )pz. (A.8)

Similarly the third term of (A.6) becomes

The fourth term of (A.6) becomes

The first term of (A.6) becomes

17j(k)I~fJ.m(k). (A.7)

The second term of (A.6) becomes
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